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ABSTRACT

Computer Molecular Dynamics (CMD) simulation has been applied to
the study of fracture in a two-dimensional system. The system was
composed of an atomic crack tip embedded in an infinite continuum
medium under an external tensilestress (mode-I fracture). The struc-
ture and properties of the crack tip have been analyzed for materials

characterized by several types of interatomic potential functions. This
technique provides a unique way of investigating the non-linear atomic

effects around the crack tip.

A computer program has been developed which can be applied to

any system of classical particles, crystalline solids, liquids or
gases, under a wide range of boundary conditions, periodic, free, fixed
and flexible boundaries. In particular, two kinds of boundary condi-
tions have been employed in the study of the crack tip structure and
stability in a two-dimensional triangular lattice. One is a fixed
boundary condition which consists of fixing the particles at the
boundaries according to a continuum elasticity solution and relaxing
the system by introducing a viscous damping in the equations of motion.
The second procedure is a flexible boundary condition which treats the
simulation region as a discrete system embedded in a continuum. A
linear Green's function is used to relax the forces arising from inter-
actions between the atomic region and the continuum. This method is
shown to be efficient and accurate in the determination of crack con-
figurations in brittle materials. It is potentially useful for the
study of other defect properties.

The critical stress necessary to propagate a crack of finite
length has been determined in the case of brittle materials. Higher
values than those predicted by the Griffith theory have been obtained.
The results seem to be very sensitive to the assumptions about inter-
actions between the crack surfaces. Plasticity around the crack tip
was also studied. Several atomistic processes of plastic relaxation
produced by simultaneous shear and rotation of the lattice were ob-
served, and the rotation and strain fields around the crack tip



calculated. The Kelly, Tyson and Cottrell (KTC) and Rice-Thomson (RT)

criteria for predicting brittle or ductile behavior were studied and

their predictions compared to CMD observations. KTC criterion seems

to agree well with CMD results whereas the RT criterion underestimates

the possibility of ductile behavior.
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1. Introduction

Computer molecular dynamics (CMD) is a powerful technique for

calculating equilibrium and dynamical properties of solids. The

method consists of calculating the classical trajectories of several

hundreds of particles interacting through a known potential function,

by numerical integration of the equations of motion.

The equations of motion which govern the time evolution of the

nuclear coordinates are a set of coupled, non-linear ordinary dif-

ferential equations. The time evolution of the phase coordinates is

called the trajectory, and the CMD technique consists of numerically

integrating the equations of motion to solve for the trajectory at

discrete time points. The classical statistical mechanics relates

thermodynamic properties to the average value of functions of the

phase coordinates of the atoms. The average is usually taken over

all elements of the ensemble which corresponds to a given macrostate.

The present work is a study of the static properties of fracture

in crystalline solids. Using CMD simulation results, a number of

continuum theory predictions are tested at an atomic level, and the

effects of non-linear relaxation observed.

It is well known that to find a general solution to the static

configuration around defects of irregular geometries can be a dif-

ficult task even in the approximation of a linear theory. Moreover,

there are cases where the system behavior is determined by a region

that is only a few interatomic spacings in extent; then non-linear

atomistic processes can not be ignored. In such cases CMD can be

an extraordinarily useful technique for studying the static configura-

tion of the defect as well as its dynamic properties.



The first studies of fracture in a discrete lattice were car-

ried out with very simple models in one or two dimensions and highly

idealized interatomic force laws. (1) These simplified models, how-

ever, contributed greatly to the understanding of the macroscopic

properties of fracture, such as brittle versus ductile behavior, and

determination of elastic constants, ideal maximum cohesive and shear

stress, etc., in terms of microscopic physical variables, such as

lattice structure, interatomic force law, etc.

Subsequent studies using computer simulation were concerned

with systems of larger number of particles and more realistic inter-

atomic force laws, such as the calculations for iron by Kanninen and

Gehlen (2 ) and for silicon by Sinclair and Lawn.(3)

The main difficulty with these computer simulations has been

the specifications of the external boundary conditions. Periodic

boundary conditions is a simple and accurate way of simulating the

properties of an infinite homogeneous system. However, when the

system is acting under the effect of an external force, a different

procedure must be used. One alternative is to apply the external

forces directly over the free surfaces of the system. The other

consists of matching the solution at the boundaries to a continuum

elasticity solution. Of the two alternatives, only the second has a

practical application in the study of a macroscopic crack under the

action of an exterior stress applied far from the crack and it alone

will be used in our simulations.

Dynamics of crack propagation has been studied by computer

molecular dynamics by Sander, by Weiner and Pear (5 ) and by Ashurst



and Hoover. (6 ) All these studies show the influence of atomic struc-

ture and interatomic force laws on the dynamics of crack propagation.

These simulations used free boundaries and the stresses were applied

directly over the exterior atoms, close to the crack tip. It was

found that the results differ substantially from predictions given by

macroscopic theories, and it seems appropriate to consider more

realistic border conditions if one wants to simulate the behavior of

cracks in real materials or establish a direct comparison between

continuum and atomistic results.

Our study of static properties of fracture by CMD consists of

simulating the crack tip behavior in a two-dimensional atomic system,

introduced in an infinite continuum medium under the action of an

external stress (mode-I fracture).

The static equilibrium configuration of the system is obtained

by applying a frictional damping to the equations of motion. The

general techniques used in this work jointly with the standard methods

of CMD are summarized in Chapter Two, where a description of the

problems associated with the different types of boundary conditions

is also included.

Chapter Three summarizes several important concepts in con-

tinuum theory of fracture, namely, the Griffith's theory of brittle

materials, and the criteria which have been recently developed to

predict brittle or ductile behavior in crystalline materials. The

last section of this chapter describes previous research done in

this area by CMD.



The description of the technique used in this work, flexible

boundary, is done in Chapter Four, jointly with the method to de-

termine the elastic constants, ideal stresses and surface energy of

a material whose atoms interact through a known pair potential

function. These physical constants are important not only for cal-

culating the displacement field according to linear continuum solu-

tions, but also for predicting brittle or ductile behavior of the

system. In the last part of the chapter the critical stress to

propagate a crack in a given material is determined by direct appli-

cation of the flexible boundary technique and these results are

compared with continuum linear elasticity theory.

Plasticity around the crack tip has been studied in Chapter

Five. Two criteria to determine brittle or ductile behavior of a

given material, one due to Kelly, Tyson and Cottrell (KTC) and

another due to Rice and Thomson (RT), are studied and their predic-

tions compared to CMD simulations.

Emission of dislocations and several microscopic processes of

plastic deformation have been observed in the simulation results.

The strain and rotation fields around the crack tip for several poten-

tial functions have been determined. Finally, a summary with conclu-

sions, discussion of results, and suggestions of further work are

given in Chapter Six.



Chapter Two

Computer Molecular Dynamics Techniques

2.1 Equations of Motion
2.2 Potential Function
2.3 Numerical Integration of

Equation of Motion
2.4 Accuracy of Numerical Integration:

Conservation of Energy and
Reversibility of Trajectories

2.5 Potential Range Cut-off
2.6 Boundary Conditions
2.7 Determination of Equilibrium

Configuration



2.1 Equations of Motion

In CMD calculations, a three-dimensional system of N particles

is treated by setting up 3 N classical equations of motion which are

coupled through an assumed two-body interaction potential. This

set of 3 N simultaneous differential equations is then integrated

numerically on a computer to give the spatial trajectories and

velocities of all the particles as a function of time.

In the present simulation, a classical system of N point par-

ticles of mass m is assumed to obey Newtonian mechanics, in which

case the equations of motion are given by

Z_ -4 -40 +. f -t# N (xi

ext
where Q is the portion coordinate of the ith particle, F. and F.1 1

are the vector forces on the ith particle due to other particles and

exterior force respectively. For central, conservative, pairwise

additive potentials, the pair force F.. between two particles i and

j of the system is the gradient of ( 0(-) with respect to j , i.e.,

where ( r ) is the pairwise potential between the particles i and j.

It is a function of the pair separation vector V; between these two

particles.



2.2 Potential Function

Empirical and semi-empirical potential functions can be con-

structed in which adjustable parameters are determined by matching

certain calculated properties of the system to experimental results.

Two fundamental assumptions are almost universally employed: central

forces and pairwise additivity. Pairwise additivity means that the

potential energy between two atoms is unaffected by the presence of

other nearby atoms. The central force assumption means that the

force between atoms is directed along the line joining the centers

of mass and so is a function only of the atomic separation. The

next discussion goes into commonly known empirical and theoretical

potential functions which have been used in our computer simulations.

Some interatomic potentials are characterized by a single

functional form which varies continuously over the entire range of

interatomic spacing and has short range repulsive and long range at-

tractive forces. A potential of this kind was employed by Lennard-

Jones(1) in which the attractive and repulsive parts vary as the

inverse of the 12 and 6 power, respectively. This potential has

often been used to represent the effective pair interactions in rare

gases and in simple non-polar molecules as N2 and CH :

This potential gives qualitative agreement with rare gas properties

in condensed phases and is computationally convenient because the

entire potential is expressed in pairwise additive two-body terms.



A form extensively used for metals is the Morse potential

01( Ir. (-4)

where N and D are constants with dimensions of reciprocal distance

and energy, respectively, and Yo is the equilibrium distance cor-

responding to the minimum of the potential. The Morse potential

approaches zero exponentially at large distance, in accord with the

Thomas-Fermi model of electronic screening. It also yields an ex-

actly soluble Shrodinger equation for the vibrational eigenvalue

problem of diatomic molecules and the eigenvalue distribution is in

good agreement with experimental spectroscopic measurement.(2)

The most important characteristics of this potential pertaining

to our CMD simulation of fracture is that the three parameters D,

o and ro of the potential for several f.c.c. and b.c.c. metals have

been determined using experimental values for the energy of vapori-

zation, the lattice constant, and the compressibility.
(3)

The estimates of the validity of the Morse potential in metals

given in the preceding paragraphs apply to a perfect crystal. An

additional complication is introduced if defects are present. The

Morse potential constants computed from the energy of vaporization,

the lattice constant, and the compressibility refer to a perfect

lattice and reflect its electronic distribution. The presence of a

defect, however, alters the electron distribution, and it is diffi-

cult to estimate how this altered distribution would affect the atoms

in the vicinity of the defect.(3)



2.3 Numerical Integration of Equation of Motion

The algorithm used to move the particles forward in time by an

amount at is given by

f(t+Ab): "CE) + v(tAt+ -LL[4.Ct) - aCt-o)] &EL

where r(t), v(t) and a(t) are the position, velocity and acceleration

of a particle at time t. This algorithm, used by P. Shofield in CMD

(4)
simulation of liquids is very strongly conserving and allows a

relatively large time step to be used.

We have checked the accuracy of this algorithm by comparing it

with the exact solution for the harmonic oscillator. Both solutions,

the exact and the approximation, have been expanded in powers of t.

(a) Exact solution corresponding to an harmonic oscillator

-Ab)( xCO) .L22 SC'vC'4b) v )t V (O). & W)

Substituting t by t + At in the above equations and expanding

.. nC(t+a,)) ,.,., G M Cft+ tj)

xCt + AL) xC 'vLct) . CL ) - V()W'AL 3 _+ V. v0  "W _____

2- 31 W 4(

v C + )- VC-) + oC4 ' Voijt (___- v

3!-'T.!

V t + &L) = VM+ -LIZO.C + a ) +5 0-M - Ct-'Otl Ta
6



(b) Algorithm (2-5), expanded in powers of t

X t a=xt)XE4 C +at-&Ct -V) V. __t

?_3 ! 12 (2-7)

vll 4 Z a E) l at 4 G4 V0 SC Lw )W 4f.

Equation (2-7) shows that the algorithm used by Schoefield is cor-

rect to order (At) 3 and (At) 2 for the positions and velocities, re-

spectively, when it is tested against the harmonic oscillator

solution.

This algorithm has the advantage that it needs less terms to

calculate r(t + A t) and v (t +a t) in expression (2-5) than the ordinary

central difference method for the same order of accuracy and the dis-

advantage that the evaluation at time t +o t is carried out using the

values at t and t -at, therefore a different procedure is needed to

initialize the numerical integration at time t = 0.

2.4 Accuracy of Numerical Integration: Conservation of Energy and

Reversibility of Trajectories

The time step size has to be chosen small enough that the inte-

gration procedure generates a stable solution to the equations of

motion. If the time step size is too large, then the equations of

motion will fail to conserve total energy and will result in an un-

stable phase space trajectory. On the other hand, it also has to be

chosen as large as possible because the computational time per time

step does not depend on the time step size, and the net cost of a

simulation over a fixed duration will vary inversely as the time step



size. The numerical integration should also span an oscillation

period in a number of time steps, i.e.,-10, such that the net change

during any single time step is not too large. The accuracy of the

numerical integration can be measured by the precision to which the

total energy is conserved. A series of simulations with different

time step sizes at different temperatures was carried out on a per-

fect lattice composed of 64 particles to determine the maximum time

step size that gave reasonable conservation in the total energy. Time

step sizes as large as 1/10 of an oscillation period gave absolute

deviations of about 0.05% per time step, and were considered accept-

able. However, more conservative time step sizes, about 1/50 of one

oscillation period, were used.

The accuracy of the numerical integration can also be measured

by the accuracy of the reversibility of trajectory. The trajectory

can be retraced simply by reversing velocities and other odd time

derivations at the time step of retracing or well by using a negative

value for at at every time step. The accumulated error in the total

energy during a computation period of one thousand time steps (500

time steps before reversing trajectories), at a temperature of 60*K,

was less than 2%.

2.5 Potential Range Cut-off

The number of neighbors that are included in a CMD simulation

is an important parameter because the calculation time scales linearly

with the total number of interacting neighbors. The total number de-

pends on the potential cut-off or the distance at which the force be-

comes negligible by comparison with the force between nearest neighbors.



However, the elimination of direct interaction between a pair of

particles separated by other interacting particles does not preclude

indirect communication between those particles. Each particle in

the system is dynamically coupled to every other particle in the

system either directly or indirectly.

In the simulation of fracture the cut-off range plays an im-

portant role because the propagation of the crack is produced by

bond rupture in tension when they reach the cut-off range, or by

bond rupture in shear in which case the crack is blunted. The surface

energy is another parameter that can change significantly if an ap-

propriate cut-off range is not chosen. We have chosen in our simu-

lations only first nearest neighbor interaction with the potential

function truncated at a distance where the force can be neglected.

Besides, several tests were done using second nearest neighbors and

the results did not change significantly.

2.6 Boundary Conditions

The behavior of an infinite system is approximated by describ-

ing the motion of N particles in a finite computational cell of

volume V with periodic boundary conditions.

If one wants to use this procedure to study the behavior of

defects, the system must be large enough such that the images do not

interact with the original defect. An additional difficulty arises

when the defect is subject to a certain state of stress. Then, the

position of the particles must be generated according to some known

theory specifying that state before periodic boundary conditions can

be applied.



To overcome these difficulties in the simulation of fracture,

two general procedures have been implemented during the last few years.

One consists of generating the state of stress by applying forces

directly over the free boundaries of the system with the defect. The

disadvantage of using this procedure is that it is very expensive to

work with a system large enough to avoid interactions between bound-

aries and the defect. The other method arranges the atoms at the

boundaries according to the solution given by the linear elasticity

theory and studies the behavior within the system, where linear elas-

ticity theory is in general not valid, using computer molecular

dynamics.

The last procedure which is the one used in this work has the

great advantage of reproducing exactly the macroscopic conditions

with a relatively small number of particles letting exact calculations

of the defect structure. This procedure is called fixed boundary

condition.

A further improvement appears when it is found that after the

relaxation of the atomic non-linear region using CMD, small residual

forces arise at the boundaries due to the difficulties of the con-

tinuum linear solution applied at the boundaries to accomodate the

atomic region after the relaxation. In this case, what has been

recently applied is a continuum linear Green's function, which gives

the displacement field due to a unit force at some distance from the

crack necessary to cancel the small remaining forces.

This method called flexible boundary has been applied in this

work to determine crack tip configuration and the critical stress



intensity factor of brittle materials. In a few cases where it was

found a large plastic region, formed by emission of dislocations from

the crack tip, the first steps of the technique, which constitutes

the fixed boundary method, was applied to a large system to avoid the

interaction of the extending plastic region with the boundaries.

2.7 Determination of Equilibrium Configuration

Several different kinds of computer experiment methods can be

used to obtain the defect configuration. They are classified, ac-

cording to Beeler,(5) in five types: dynamical, frictional damping,

variational, Monte-Carlo and lattice-static methods. A pairwise

atomic interaction model is assumed for computing structure-dependent

forces and energy contributions. Structure independent forces and

their associated energy contribution usually are accounted for by

specification of appropriate boundary forces and the atomic volume.

Detailed descriptions of the first four methods and their applications

are given in Ref. 6. The lattice-static method is explained in

Refs. 7 - 9.

In the dynamical simulation of a crystal, each atom vibrates

continuously about its static equilibrium position. The array of

atomic positions can be obtained by computing the time-average portion

of each atom. In instances where only the time-average portions are

desired, the dynamical method can be amended so that the atom motion

is progressively damped as the atoms approach their static equilibrium

portions.

There are several procedures for reaching the static equilibrium

configuration. Gibson et al. (10) introduced a frictional method for



static equilibrium configuration calculations wherein the velocity

of each atom is set to zero each time the kinetic energy of the en-

tire system reaches a maximum. This procedure is suggested by the

circumstance that the velocity magnitude of a mass point in simple

harmonic motion is maximum at the time it is passing through the

static equilibrium position (zero net force position). Several vari-

ations of this basic idea have evolved. As a mass point, in simple

harmonic motion, approaches the static equilibrium position, the dot

product of its velocity and the restoring force in a monotomically

decreasing positive quantity which vanishes at the equilibrium posi-

tion and then becomes negative. On this basis, Evans and Beeler

introduced the idea of setting the velocity of any atom to zero

whenever the velocity-force dot product becomes negative, in a static

equilibrium calculation. This individual atom criterion for damping

leads to a significantly faster convergence than the maximum total

kinetic energy criterion.

The procedure used in this work consists of introducing a

frictional force in the equations of motion of each particle after

the system has released freely for several oscillations of the total

kinetic energy:

The damping constant has to be chosen small enough that the system

is not so overdamped that it is quenched, and as large as possible

so the system will reach the minimum internal energy configuration



in a reasonable period of time. Usually the damping constant is

chosen to be around half the time average value of the critical damp-

ing constant estimated by Hooke's Law. We did several tests with

different damping constants and found that for values close to the

critical damping, the average time for the system to reach the minimum

internal energy configuration was about 300 time steps. The total

procedure, therefore, consists of several periods of free relaxation

alternating with periods with frictional damping until the system

temperature has decreased to a few degrees Kelvin. The final con-

figuration corresponds to a stable state of minimum potential energy

and further damping to still lower temperatures does not lead to any

significant different configuration of the relaxed atomic positions.



Chapter Three

Computer Molecular Dynamic Simulation of Fracture

3.1 Griffith Theory of Brittle Materials

3.2 Brittleness and Ductility of Crystalline
Materials

3.3 Computer Molecular Dynamics of Fracture --

Previous Works



The following sections are devoted to summarize some of the

general concepts and theories of macroscopic fracture mechanics which

will be examined, from an atomistic point of view, in the present work.

A description of the different models and recent results in atomic

simulation of fracture is given in Section 3.3 of this chapter.

3.1 Griffith Theory of Brittle Materials

Griffith 's idea was to set up a model for a crack system in

terms of a reversible thermodynamical process. (12) The important

elements of the system are defined in Fig. 3.1: an elastic body B

containing an internal crack S of length 2C is subjected to loads

applied at the outer boundary L.

The first step in the treatment was to find an expression for

the total energy of the system. To do this the individual energy

terms which change as a result of crack formation are considered.

First, it can be expected in general that the outer boundary of the

cracked body will undergo some displacement, such that the applied

load does an amount of work WL. (For a truly reversible system an

increase in this work can be identified with a corresponding decrease

in the potential energy of the loading system.) Second, the strain

energy VE stored in the elastic medium must be sensitive to any vari-

ations in the system geometry. Third, the mere act of creating new

crack surfaces requires the expenditure of free surface energy VS.

For a static crack system the total energy is the sum of threse

three terms:

V: (- w VE) I-V (3 



Figure 3.1 Static plane crack system. L applied
loading, S crack surface.

Vs

go -

C c CNk LLUE )

Figure 3.2 Energetics of Griffith crack in
uniform tension.

Vo.CVa-

% 
1

%4,

\ \



Since forces transmitted to the crack region are determined by the

loading system and elastic medium, it is convenient to refer to the

bracket term in Eq. (3-1) as the mechanical energy of the system.

Of course, if we were to be concerned with a dynamic crack system,

we would have to add a kinetic energy term to Eq. (3-1).

Thermodynamic equilibrium is then attained by balancing the

mechanical and surface energy terms over a virtual crack extension

. The mechanical energy must decrease as the crack extends. On

the other hand, the surface energy term must increase with crack

extension, since the cohesive forces of molecular attraction across

C must be overcome during the creation of the new fracture surfaces.

Thus, the bracket term in Eq. (3-1) favors crack extension, while the

second opposes it. This is the Griffith energy balance concept, a

formal statement of which is given by the extended equilibrium

requirement

l-V o (3Z)
d.c

Griffith attempted to confirm his theory by applying it to a

real situation. He needed a model for a crack in order to calculate

the energy terms in Eq. (3-1). For this he took advantage of the

(3)
Inglis analysis, considering the case of a narrow elliptical crack

in a remote, uniform tensile stress field. Then, for experimental

verification he had to find a well behaved, model material, isotropic

and closely obeying Hooke's law at all stress levels prior to fracture.

Glass was selected as the most easily accessible material satisfying

these demands.



In evaluating the mechanical energy of his model, Griffith used

a result from linear elasticity theory, namely that for any body under

constant applied stress during crack formation,

V - V n > (3- 3

From the Inglis solution of the stress and strain fields, the

strain energy density is readily computed for each volume element

about the crack. Integrating over dimensions large compared with the

length of the crack then gives, for unit width of the crack (measured

along the crack front(3'4)

VE- c i ' -J I E (J ..,-; (3.4

for a thin plate, or

for a thick plate. Here , is the applied tension normal to the

crack plane, E is Young's modulus, Y is Poisson's ratio, and 2C is

the length of the crack. The application of additional loading

parallel to the crack plane has negligible effect on the strain energy

term in Eq. (3-4). For the surface energy of the crack system,

Griffith wrote for unit width of crack

s- z i ''( -



with y the free surface energy per unit area. The total system energy

Eq. (3-1) thus becomes for the case of plane stress

The Griffith equilibrium condition, Eq. (3-2), may now be applied to

Eq. (3-6); this gives as a critical condition for fracture

c 2 (E T/rr (3-7)

for constant stress, plane stress conditions (Fig. 3.2).

In the above case, the analysis has been applied to a crack in

a brittle elastic solid where its movement does not involve plastic

deformation. It is significant that the same approach can also be

applied to problems where the movement of the crack involves plastic

deformation with the assumption that the plastic region around the

crack tip is negligibly small in comparison with the outer zone

(Irving approach). In this case we may substitute r by ,, where bj

is the plastic work done in forming a square centimeter of surface.

Under these circumstances the t surface, defined in terms of the

energy to break atomic bonds must include the energy due to all the

mechanism of plastic relaxation produced during the crack extension.

3.2 Brittleness and Ductility of Crystalline Materials

There is extensive literature covering all the continuum and

atomistic aspects of crack tip plasticity. In this section a model

of dislocation nucleation at the tips of cracks and the influence of



such defects to predict brittle or ductile behavior as described by

Kelly, Tyson and Cottrell (KTC)(5) and by Rice and Thomson (RT) 6 )

is discussed.

A criterion for brittle fracture in crystals can be established

in terms of the spontaneous emission of dislocations from a sharp

crack. The stress field near the crack tip in a linearly elastic

medium is of the form j- K (Z~rv) 1 (9) where K is the stress

intensity factor and (r,G) are polar coordinates with the origin at

the crack tip. At the crack tip itself where Y- O0 a non-linear

treatment is required as the interatomic bonds are stretched beyond

the region of harmonic behavior. As the stress intensity increases,

lattice failure will occur at the crack tip in the non-linear region.

Failure can occur by bond rupture in either tension or shear, which

will determine whether the behavior is inherently brittle or ductile.

Two treatments have been presented in the literature to predict

the failure mode from known material properties. Kelly, Tyson and

Cottrell proposed the criterion that an ideal (defect-free) solid

may sustain a fully brittle crack only if the theoretical strength

in tension is exceeded before the theoretical strength in shear within

the local field of the tip. The criterion makes no comment on the

nature of any shear deformation that might happen. One only needs to

consider the theoretical strength calculations in relation to the

stress distribution at the crack tip, coming back to the equations

of linear elasticity for an evaluation of this field. The final ex-

pression proposed by KTC was that brittle fracture would be observed

if J. >( -- R where the subscripts "ideal" and "max"



refer to the ideal properties of a perfect lattice and to the maximum

values attained at a crack tip respectively.

Rice and Thomson on the other hand, have argued that a neces-

sary criteron for brittle fracture is stability against the emission

of dislocations from the crack tip. They have treated this nucleation

process within the approximation of linear elasticity and the Pas's

model of a dislocation core. the specific question addressed by these

workers is whether the shear deformation is sufficient, not merely to

nucleate a dislocation at the crack tip, but also to propagate it

within the stress field into the surrounding crystal. They considered

first the balance between the following crack-dislocation interaction

forces: (a) force on dislocation arising from stress field of crack,

(b) surface tension force caused by creating surface ledges at

(blunted) crack, (c) image force of dislocation in the free surface

of crack. The first term repels the dislocation from the crack tip,

while the remaining two attract it. One then compares the cores of

the dislocation versus the distance in which the dislocation starts

to be repelled from the crack tip.

Rice and Thomson thus conclude that covalent and ionic solids,

along with h.c.p. metals, are stable against dislocation emission,

while f.c.c. metals are unstable; b.c.c metals comprise an inter-

mediate case. The KTC criterion probably leads to an underestimate

of the brittle tendencies of the solids because of not considering

the subsequent propagation of newly generated shear deformation

(dislocation).



Both treatments require approximations in their quantitative

development. The stress analysis of linear elasticity is used to

evaluate(s~i ,,/ A I around the crack tip in the KTC criterion and

the forces on dislocations near the crack tip in the RT model.

Better models of the non-linear and atomistic behavior of materials

are also required to evaluate A l .,f ) and dislocation core

structure with greater accuracy.

3.3 Computer Molecular Dynamics of Fracture - Previous Works

During the last years a number of studies of fracture in crystal-

line solids using atomistic models have appeared. One can classify

them in two categories. The first type is concerned with a specific

material or group of materials, and its purpose is to be as realistic

as possible with respect to both crystal geometry (dimensionality of

the system, boundary conditions, etc.) and interatomic force laws.

These models must yield information regarding atomic processes in the

given class of materials. Examples are provided by the work of

Kanninen and Gehlen(7'8 .9 ) and Sinclair.(10)

Gehlen and Kanninen worked on g-iron in a three-dimensional

lattice on which the atoms interact through a central pair potential

constructed by Johnson. This potential is based upon two-body inter-

actions which extend out to first and second nearest neighbors. An

empirical form is used with the constants selected to match the experi-

mentally determined elastic constants of the material. The atoms are

initially put into a configuration approximating the defect being

simulated. The boundary atoms are held fixed in the positions given

by the linear elastic continuum solution (fixed boundary condition).



The final position of atomic equilibrium is evaluated by letting the

atoms inside the system move freely according to the interatomic

forces.

Based on this model Gehlen and Kanninen tried to check the

validity of Griffith's criterion. All the macroscopic variables,

elastic constants and surface energy were specified by the potential

function and the critical stress was determined by calculating the

condition of maximum elongation for the crack tip bond. The estimated

values for the critical stress intensity factor were found to be

greater than those necessary to produce an exact correspondence with

Griffith's equation. A possible reason for this discrepancy, as

noted by the authors, is that the boundaries were fixed. This inflexi-

bility could produce high residual forces between the atomic and con-

tinuum regions, especially if the atomic boundaries are close to the

crack tip. To avoid these difficulties the authors used a new pro-

cedure called flexible boundary to attenuate the effects of the lack

of adjustment between the two regions. In the present work an im-

provement of this method is applied to crack tips and it will be dis-

cussed in Chapter Four.

The second type of atomistic models is highly idealized from

the viewpoint of crystal geometry (two dimensions, free boundaries,

etc.) and interatomic force laws. They cannot, therefore, represent

directly any particular real material. Nevertheless, they do serve

to provide insight into general characteristics of static and dynamic

propagation of crack with a minimum of computational difficulties.

Examples of idealized atomistic models include the works of Thomson,



Hsieh and Rana(11,1 2 ,13 ) in which a new phenomenon called "lattice

trapping", the crack analogy of the Peierls resistance to a dislocation

motion, is studied. They used two models which were subjected to a

"lattice-static" analysis. In the first model, a one-dimensional

system, the crack was depicted as two semi-infinite chains consisting

of points of atoms linked horizontally by bendable elements and ver-

tically by stretchable elements. The chains were subjected to opening

forces applied vertically at the free ends. In the two-dimensional

model an infinite square lattice of atoms linked by stretchable and

bendable elements was considered. The crack was opened either by a

vertical wedging force or by vertical tensile forces distributed uni-

formly at infinity. The "lattice-static" analysis began with an as-

sumption concerning the form of the atomic interaction, and proceeded

to calculate an equilibrium configuration consistent with appropriate

boundary conditions. This involved considerable mathematical com-

plexity, and one had to restrict the analysis to the simplest force

laws for the linking elements. Accordingly it was assumed that the

elements were Hookean up to a critical breaking point. The lattice

trapping behavior has been tested with other atomistic models, using

CMD, by P.C. Gehlen and M.F. Kanninen, and A. Gohar.( 1 4) These

results seemed to indicate that the phenomenon of lattice trapping

is almost completely attenuated when more realistic interatomic force

laws are used in the simulation.

Highly idealized modes have been used in the studies of Ashurst

and Hoover (15 ) and Weiner and Pear.(16) Ashurst and Hoover used a

two-dimensional triangular lattice in which the particles interact by



truncated Hooke's law forces and the exterior stresses acted directly

over the free boundaries. Their static results for the energy, en-

tropy, stress concentration and crack structure are consistent with

expectations from macroscopic elasticity theory. The dynamic theory

of crack propagation is, according to the authors, less well developed

and supersonic crack velocities could be produced by the proximity

of the exterior boundaries. Under these conditions crack propagation

can outrun lattice relaxation. These effects can be avoided if the

crack is enclosed in a continuum elastic medium in which the stresses

are acting at infinity. Then the crack propagation will be only af-

fected by the natural relaxation of the strain field around the crack

and will not be influenced by the proximity of the exterior boundaries.

This second model is more realistic but it introduces additional com-

putational difficulties that remain to be solved. In the next chapter

we give a full description of the advantages and limitations of this

method, called flexible boundary conditions.



Chapter Four

Flexible Boundary Conditions

4.1 Description

4.1.1 Linear Elasticity Solution
4.1.2 Relaxation Method
4.1.3 Green's Function

4.2 Computer Molecular Dynamics Determination of Elastic Constants
in a Two-Dimensional Triangular Lattice

4.3 Application of Flexible Boundary to a Two-Dimensional Crack Tip



4.1 Description

Several kinds of boundary conditions have been applied recently

to the study of crack tip configurations. Some of them, periodic

boundaries, free boundaries with stresses applied directly on the free

surface, etc., were summarized in Chapter Three. In this section we

give a complete description of the so-called flexible boundary (FB)

developed by Sinclair et al. () The next section describes the deter-

mination of elastic constants for a two-dimensional triangular lattice,

a step that is necessary in applying the continuum elasticity solutions

at several stages of FB.

Several methods of flexible boundary (2 ,3) have been developed.

They differ only in the way the atomic forces arising from the inter-

action of the continuum with the atomic region are relaxed. These

techniques, as noted by Sinclair et al,() have improved the efficiency

of the calculations by permitting the use of smaller atomic systems,

have yielded descriptions of the dilatational effects arising from

non-linearity in the core of the defect, have allowed equilibrium to

be established between the atomic and continuum regions, and have made

possible calculations of defect mobility by removing the constraints

imposed by rigid boundaries.(2-6)

The first step in imposing FB begins with a perfect lattice of

the type of material which is going to be studied. The first config-

uration of the defect is then generated with all the atoms in the

system displaced according to a linear continuum solution. This solu-

tion gives the displacement field under fixed conditions (type of stress

boundary conditions, etc.) and the core of the defect is arbitrarily



fixed at the center of our system. The resulting array is then

divided into three regions as shown in Fig. 4-1 for the case of a

crack tip. Region-I contains those atoms which are going to be moved

according to CMD, under the force law of a chosen two-body central

potential. Region-IIl is composed of atoms which interact with atoms

in Region-I or Region-III, and contains all the atoms on which a force

may be exerted by at least one atom in Region-I. The thickness of

Region-II should thus equal the maximum range of the interatomic force

law. Region-III is composed of the exterior atoms which are always

displaced according to a linear continuum solution. The thickness of

Region-III should correspond to the minimum distance to completely de-

termine the forces acting on each Region-II atom and is also equal to

the maximum range of the potential function.

The second step is to relax Region-I atoms using CMD. Several

alternative procedures can be used to reach a relaxed configuration

in which the forces on the Region-I atoms are less than a predetermined

value. The procedure followed here has been explained in Chapter Two;

it is a method which continuously takes out kinetic energy from the

system through a frictional force.

The third step uses the residual forces acting on Region-II

atoms, generated by the relaxation of Region-I, to create a displacement

field acting on the entire system. This field is calculated by using

a continuum linear Green's function, (7 ) which gives the displacement

due to a unit force acting in a specified direction in the presence

of the crack. (8 ,9 ) The resulting displacement field is thus a sum of

Green's functions with origins at each of the Region-II atoms. As we
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Figure 4.1 Regions for the flexible boundary
method in the case of a crack tip.



will see in the next sections the Green's function diverges logarithmi-

cally at the point where the force is applied so an additional step

must be used to move Region-II atoms. In the present procedure this

step is a relaxation of Region-II atoms using the frictional damping

method discussed above.

If the resulting forces on Region-II atoms are not small enough,

the last steps are iterated until all the atoms in Regions-I and II

have forces below some chosen tolerance level. A synopsis of the

total procedure constituting the flexible boundary is the following:

(a) Generation of the atomic configuration of the defect
according to a linear continuum solution. Division
of the system into three regions.

(b) Relaxation of Region-I using CMD.

(c) Displacement of Regions-I and II according to the
Green's function for the crack problem.

(d) Relaxation of Region-II atoms using CMD.

(e) Iteration of steps b, c, and d until total forces
over atoms in Regions-I and II are below a pre-
scribed magnitude.

4.1.1 Crack Tip Elastic Field

In proceeding to an analysis of the plane-crack problem it is

useful to distinguish three basic modes of crack-surface displacement.

Mode I corresponds to normal separation of the crack walls under the

action of tensile stresses; Mode II (sliding mode) corresponds to

shearing of the crack walls in a direction normal to the crack front;

Mode III (tearing mode) corresponds to mutual shearing parallel to the

crack front.(11) Of the three modes, the first one is the most perti-

nent to crack propagation in brittle solids in which we can visualize



the crack extension by progressive stretching and rupture of cohesive

bonds across the crack-plane.

In our study we will concentrate on Mode I fracture where small

plasticity, with possibility of formation of dislocations, can result

around the crack tip. At greater distances from the crack tip the

linear elasticity theory can be applied. For non-brittle solids,

blunted cracks with high production of dislocations and large plastic

regions around the crack tip or completely surrounding the crack can

be produced. (11)

In this section we give the final solution for the linear elas-

ticity crack tip field, stresses and displacements in the Mode I

fracture, which are used in the first step of the FB technique. The

standard solution to this problem involves searching for a suitable

"stress function" which satisfies the "biharmonic equation" of linear

elasticity theory (fourth-order differential equation including the

condition of equilibrium,compatibility of strains, and Hooke's law),

in accordance with appropriate boundary conditions.(1011) The com-

ponents of stress and displacements are then determined directly from

the stress function.

An analytical technique has been developed by Westergaard,

Muskhelishvili and others for the special case of plane-crack

geometry.(12,13) The model is the "sharp crack" approximation, where

it is assumed that the crack tip in the unstressed state is perfectly

sharp and that the crack walls remain free of stresses.

The solutions for the field near the crack tip (i.e., at dis-

tances from the crack tip small compared to the length of the crack)



take the following analytic form for the isotropic case(10) (Fig. 4.2):

Mode I

7,y y -k I Lf 0 /Z + S C'
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where K = (3-0)/(1+Y) for plane stress, K = (3-4.v) for plane strain,

E is the Young's modulus and 9 the Poisson's ratio. The quantity K1

is called the stress-intensity factor; it is dependent on the boundary

conditions of the crack system. In this case its value is:

(c, - O,,, VTc (,-r.

Tyy = tensile stress, Mode I, applied at infinity

ZC = crack length

We can reduce these expressions to the simple form:

, ( - 3)



Figure 4.2 Crack tip stresses, showing components
in rectangular coordinates.
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The stress intensity factor depends only on the applied stress

and the crack geometry; it determines the intensity of the local field.

The other factors depend on the spatial coordinates about the tip, and

determine the distribution of the field.

4.1.2 Atomic Relaxation

The next step of the flexible bouiidary technique consists in

the relaxation of Region-I toward a configuration of very low forces

with Region-II and Region-III atoms held fixed. As indicated before,

the procedure followed here involves a frictional damping applied to

the "equations of motion" after a certain period of normal simulation.

The final temperature, after application of frictional damping, is

reduced to approximately 30K. Further damping to still lower tempera-

tures does not lead to any significantly different configuration of

the relaxed atomic positions.

4.1.3 Green's Function

The next step of our procedure which is different from the

previous flexible boundary methods is to generate a new displacement

field based on the residual forces on Region-II atoms. These forces

arise from the constraint imposed by Region-III, composed of atoms

displaced according to a continuum linear elasticity solution, over

Region-I.

The displacement field necessary to cancel these forces is calcu-

lated by a sum of Green's functions corresponding to each force on

Region-II atoms. The Green's function (7) gives the displacement field

caused by a unit point force applied in a certain direction at some

distance from the crack. This Green's function must include the



influence of the crack surfaces on which the boundary conditions

must be satisfied (no forces can act normal to a free surface).

The resulting displacement field due to the Green's function

has been calculated by Hirth et al. (8) for the case of isotropic

materials. The displacement field due to the image forces which

cancel the normal stresses on the two crack surfaces is:
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where F1 and F2 are the point forces in the x and y directions,

= F 1 /F 2 , K = 3-4' for plane strain, p is the shear modulus,V , the

Poisson's ration and

E: I+ 'P c. 4 -,.

tam, JC41/)-PJL'leY2-
C* C /) t P WS C GIk)j

P: Cy-1/P)'I

r, e and p, are the cylindrical coordinates defining the positions

of the force source and point where the displacement is evaluated.

The field of the forces themselves that gives the total field

when added to the displacement field of the image forces has been

(9) (15)derived by Hirth and Eshelly. The displacement field is:

tk _TUA. + PLw

[+__ yU.L"' f- '
e  .i J ' - Le P

F + , . c~y,- Pz 1( P4, + Pt:,, . -. .. o , (b . 9].]

+ A4 K +1 p L ( PL.

We rederived these results following the procedure indicated by

Hirth.(7) An elastic and isotropic Green's function is calculated in

the same way as for the evaluation of potential fields in electro-

statics. In this case, there is a correspondence between the elastic

displacement U. and the electrostatic potential V and between the

sources generating the fields, force f, and the charge density f. One

finds that the ith component of the displacement Lt. C -r') caused by a



unit point force S(r') applied in the jth direction at the point r'

(7)is

k -rl ) is called the Green's function for the elastic displacements

of an isotropic system with dame constants X andy. A continuous

distribution of forces d(') in an elastic medium causes displacements

Equation (4-5) gives the response of an infinite body to a point

force. In a finite body, boundary conditions must be satisfied. The

displacements in a finite body subjected to a point force can be de-

scribed as a superposition of the displacements (4-5) and displace-

ments caused by "image" forces applied on the external surface of the

body in order to satisfy boundary conditions.

In our case we have rederived Eqs. (4-4b) applying (4-5) and

(4-6) to the case of two line forces F, S(x') y') and F(x') CY')

The forces are uniformly distributed along a line parallel to the Z

axis. F and F are the forces per unit length directed in the x and
x y

y direction respectively.

The method we have applied is a powerful procedure for the solu-

tion of problems in the continuum theory of elasticity. For example,

the displacement field due to point and line defects (interstitials,

dislocations, etc.) can be easily determined if the response of the



body to a point force (4-4) or a line force (4-4b) is known. The

interstitial solution would be given by the displacement field due

to three perpendicular double forces,and an edge dislocation by the

displacement field of two line forces coupled without moment.

To make an estimate of the range of validity of the continuum

Green's function, a comparative study has been done between the elastic

displacement provided by this function and the displacement obtained

using CMD at short distances from the point force. The CMD experiment

consisted of applying an external unit point force at the center of a

perfect lattice and calculating the final displacement field. The

external force was applied to an atom surrounded by an infinite lattice

with the boundary atoms located according to the continuum Green's

function (Eq. (4-44). The final CMD displacement field gave values

about 2% less than the Green's function for the first nearest neighbors

while at greater distances from the source the discrepancy was much

less. Therefore, the lattice Green's function can be applied at dis-

tances greater than or equal to the nearest neighbor separation. The

asymmetry of the displacement field in the CMD case is due to the non-

linear effects of the potential function.



Distc c.nce fVoM
the ov " -E
c TZterato m r'c

spacin.r 3J

6Ve I.s
Jv ria I'o ni

(A)

-3 -z

O. Z5I/ .t52 5Z O.Z 9 oOZ . 9 2 .5 2 0.5/7'

O. 5/O o.Z S63 o.Z.5Z .O.ZY Z .oZ659 O. Z569 o.ZSjz

Table 4.1 Atomic displacements (A) given by the Green's
function of a unit point force directed in the

positive x direction and CMD simulation. The

displacements have been measured at several

interatomic spacings from the force along the

x axis. The interatomic spacing is 4.1290A.

oCMO
A)



4.2 Computer Molecular Dynamics Determination of Elastic Constants

in a Two-Dimensional Triangular Lattice

The macroscopic elastic constants of a 2-D triangular lattice

have been determined by CMD. The system is composed of rare gas atoms

interacting with nearest neighbors through a Lennard-Jones potential.

The CMD simulation was conducted by applying different kinds of stress

on the free surfaces of the system, which is composed of an 8x8 array

of particles.

The elastic constants were determined in the limit of small

deformations where the linear elasticity theory can be applied. A

frictional damping procedure was used during the atomic relaxation.

The final position of static equilibrium corresponds to a state of

minimum total potential energy and its variation during the experiment

must be equal to the work done by the exterior forces.

The present model is similar to the one studied by Ashurst and

Hoover.(1 6 ,1 7) They have assumed a two-dimensional triangular crystal

in which particles interact with nearest neighbors springs of elastic

constant K. Their calculations showed the isotropic form of the

stress-strain relations and the&nce' constants were: - Ky= /Lt

(See Eq. (4-11).)

The validity of the Ashurst-Hoover analytical results was tested

independently by our CMD experiments. Both cases gave the same results

for K- ~L VL , where the equilibriumposition corresponds

to the interatomic distance between nearest particles. Logically, for

small displacements, any potential would give the same elastic con-

stants if its curvature at the position of equilibrium o

is fitted to the same value.



By linear elasticity theory, the elastic constants in a

two-dimensional crystal are completely specified if the tensor T is

known:

in two dimensions

rx C1, C, C6 xx
rY c , c C .- CL3  (4-7)

1Y CIO C3L. C3J3  E-

where (18) CC. c -y - -y x

and c3j : csL :CIS : CZ3 :o

The calculations of the four constants, C1 1 , C1 2 , C2 2 and C3 3, were

performed in four separate CMD simulations.

(A) Simulation 1 - Calculation of C2 2.

In this calculation we began with the equation

ry Y C-X EX + CLL 6 y

We made C-xx:o by ensuring no atomic displacements in the x direction,

then

:YY Ca Y

where /-cyy : / C- y:LL,/Lof is the exterior force acting on each

atom, d, the nearest neighbor interatomic spacing and L,Lothe final

and original length of the system respectively. C22 is determined

from the slope of the curve Gy versus ,r at the origin. Strains

were also calculated by measuring the relative deformations within



the system. In this way the boundary effects were avoided.

(B) Simulation 2 - Determination of C2 1.

yy : Ca Ex, " Cz Eyy

Now, we let contractions of the system in the x-direction while apply-

ing a stress ,Yy. The two strains Exand CyY were measured and the

value of C2 2 was known from Simulation 1.

(C) The same procedure was employed to calculate C1 1 , but now

applying a stress in the x-direction. The symmetry of the T tensor

was checked by determining C1 2 . As expected from the isotropic form

of T (Eq. (4-11)), the values found for C11 and C12 resulted equal to

C22 and C21 respectively.

(D) Finally, to determine C33 ( T'y C33 xy) a shear stress,

tangent force to the free surface, was applied on each surface atom,

whereby definition, E,y :ta, 9.2 . The resulting elastic coefficients

for our 2-D lattice are

Ce,, Cie - IEL.. dy'iesef m

C,,: C, z'8. 7. S'lI 4 Cr-n

237-41 dyve/c" m

If we express Eq. (4-7) in the form:

0 XA E



the value of the iateQ constants X and A can be determined using (4-10)

We can see that these values, determined by CMD, coincide with the

analytical calculations of Ashurst and Hoover, assigning to the con-

stant K the value .3VL - q dyMc M

The determination of the elastic constants E, Young's modulus,

and P, Poisson's ratio, was carried out by inverting the tensor T.

C X 3 1j SS L S Y

where, by definition

.I

y-y &sL TX G'x Cc rr. o) (LI 3c1)

and

In the following CMD experiments we have used the elastic con-

stants derived in this section. When it was necessary to use elastic

continuum solutions in three dimensions, for example in step-1 of FB,

where the initial configuration of the defect was generated, and in

step-3 where Green's function was applied, we have used the equivalence

between our 2-D case and the 3-D plane strain with the same d~

constants.(16)



Surface energy is another physical constant of great importance

in mechanics of fracture. In our case we need it to determine the

theoretical Griffith's critical stress. The surface energy is taken

as the work required to completely separate the crystal along some

given plane starting from the undeformed perfect configuration.

When the atomic forces are specified by a potential function and

there is a finite cut-off distance, the surface energy is given by the

difference of energy on the potential curve between the static position

of equilibrium and the cut-off distance which would correspond to the

energy to break a bond times the number of bonds per unit area along

the plane of crack propagation.

We have determined by using this procedure the surface energy of

the Lennard-Jones system and three Morse potentials. The values are

listed in Table 5.1 of the next chapter.

4.3 Application of Flexible Boundary to a Two-Dimensional Crack Tip

The procedure described in Section 4.1 has been applied to a two-

dimensional triangular lattice whose atoms interact through a Lennard-

Jones potential, Fig. 4.3.

To demonstrate the efficiency of the flexible boundary technique

as applied to small systems, several tests were carried out with dif-

ferent numbers of particles and two different stresses. Figure 4.4a

shows the variation of the crack tip bond length with the size of the

system for a stress intensity factor close to the Griffith's critical

value, which has been determined using the elastic constants and sur-

face energy of the system (Section 4.2)

C- 0 d e'S
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The high efficiency of the procedure is shown in Fig. 4.4b where

a small stress intensity factor was applied to ensure that the linear

elasticity theory is valid at any point of the system. The configura-

tion of equilibrium using FB could be sufficiently accurately determined

with a small system composed of only 84 particles whereas considerably

larger systems were required to obtain the same crack tip bond length

using fixed boundary condition.

At high stresses, where a non-linear region exists around the

crack tip, the flexible boundary procedure is not any more efficient,

as Fig. 4.4a shows the results given by FB vary with the size of the

system about as much as the results obtained with fixed boundary. The

reason for this behavior is probably that the elastic continuum

Green's function, which is responsible for the final displacement of

the boundaries, has been derived assuming the system is entirely com-

posed of a linear elastic material and does not consider the non-linear

properties of the region surrounding the crack tip. This effect is

clearly more important at high stresses and when the system size is no

longer large compared to the size of the non-linear region. In this

case it will be necessary to work with larger systems in order to

obtain the correct crack tip configuration.

Table 4.2 shows the variations with system size of the maximum

force acting on atoms in Region-I and Region-II. Also given are the

crack tip bond lengths obtained with fixed and flexible boundaries.

If the forces acting on Region-II atoms are zero after the re-

laxation of Region-I, we can assume that the continuum linear elasticity

theory is valid in this region and that the boundaries do not impose
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any constraint on the crack tip. Unfortunately, the magnitude of

these forces decreases very slowly by increasing the number of particles

(fourth column of Table 4-2) being necessary to use very large systems

to assume that the continuum solution at the boundaries is valid.

Flexible boundaries provide a procedure to cancel these forces for

small systems and as we have seen its efficiency only decreases in

the presence of large non-linear regions around the crack tip.

Figures 4-5 to 4-16 show the strain fields and rotations around

the crack tip at different stages of the computations: (a) initial

step or continuum elasticity solution, (b) after relaxation of Region-I,

fixed boundary and (c) after the application of FB. The principal

strains and rotations have been calculated using the procedure given

in the next chapter. (20)

The difference between fixed and flexible boundaries is shown

in Figs. 4.5a, b and c, where a stress intensity factor V-Tc equal to

1.13(T~ ) was applied. The critical value (rViT), corresponds

to the theoretical value derived by Griffith and was calculated from

the elastic constants and surface energy of the system.

Figure 4.5b shows the crack tip configuration after the relaxa-

tion of Region-I, fixed boundary. The crack tip bond length has not

reached the maximal permissible length, which corresponds to the

cut-off of the potential, so one may conclude on this basis that the

critical value of the stress intensity factor is greater than

Heo
1.13 ( VWC) . However, as shown in Fig. 4.5c, which corresponds to

a configuration obtained with FB, the crack tip bond has already

reached the maximum bond length at a stress intensity factor of



1. 13 ( e ) and the crack is propagating by breaking bonds.

Therefore, the critical stress intensity factor is actually less than

Figures 4.6 and 4.7 show the principal strain fields and

rotations around the crack tip for the different boundaries. The

linear elasticity solution, Eq. (4-la), yields a state of biaxial

tensile strain in front of the crack tip and higher values of shear

deformation at 600 and 1200 from the positive x axis (see Fig. 4.6a).

The non-linear effects given by CMD simulations are shown in Figs.

4.6b and 4.6c, which correspond to the amplifications of these fields

in the immediate vicinity of the crack tip. The brittleness of the

material has not changed substantially the distribution of the strain

around the crack tip and the only remarkable characteristics are the

higher values of the strains when the FB procedure was applied.

The absence of dislocation in this material which would indicate

a brittle behavior can be explained by applying the Kelly, Tyson and

Cottrell criterion (KTC) discussed in Chapter Three. This criterion

for brittle behavior is

T16

where the second term depends on the maximum values attained at the

crack tip. Its value according to linear elasticity theory is 0.5

for mode - 1 fracture.

The ideal shear and cohesive stresses were determined by two

separate simulations, where a shear and a biaxial tensile stress were



applied to a perfect lattice (Figs. 4.10 and 4.11). We will show in

the next chapter that the ideal shear stress determined in this way is

an overestimate. As proposed by Orowan ( 2 1 ) we have taken for the

ideal shear stress the value determined in a simulation where the

atomic sliding in the x direction is accompanied by a small displace-

ment in the positive y-direction (Fig. 3.11, dashed line). The rela-

tion between the ideal shear and cohesive stress is 0.83, implying

that the system should show brittle behavior.

Finally, it has been found that the stress intensity factor

necessary to break the crack tip bonds and propagate the crack is

higher than predicted by Griffith's theory.

CMD CC.-V; jXC1 Y AO eIUM - 14 (2 -D))

GLfcqw' )4 eorvy (r~irc) 3... fO'4dyld *CVm'/4 L2O0

The CMD critical stress intensity factor was determined by ap-

plying successively higher values to cr until crack propagation was

obtained.

The critical value depends on the atomic model used in the

simulation. In our case we have assumed no interaction between atoms

situated on different crack surfaces. If interaction is possible when

the distance between a pair of atoms is less than the cut-off range

of the potential function the stress intensity factor can be higher

than the value obtained above. Similar results were found by Gehlen

et al. (22) in the case ofc-iron, the critical stress intensity factor

being about three times the Griffith value. These results are not



surprising for several reasons. First, Griffith's criterion is con-

sidered a necessary condition but not sufficient for crack propagation.

Secondly, Griffith's equations are based upon macroscopic linear

elasticity continuum properties. They do not consider energy balance

on a local, atomic scale or generation of dislocation at the crack

tip, although the last possibility was not observed in this material.

Further discussion of these results and some of the recently developed

atomic models which could explain this behavior is given in the last

chapter.
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Chapter Five

Computer Molecular Dynamics Studies of

Plastic Deformation around a Crack Tip
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Ductile and Brittle Behavior

Computer Molecular Dynamics Studies of Ductile versus

Brittle Behavior

5.1

5.2

5.3



5.1 Introduction

Two continuum treatements to predict brittle or ductile behavior

from known material properties have been studied using CMD. In ad-

dition to these two tests, the strain fields due to several atomistic

processes of plastic relaxation around the crack tip have been

determined.

The first section of this chapter summarizes the Rice and

Thomson (RT)(1 ) and Kelly, Tyson and Cottrell (KTC)
(2 ) criteria for

predicting brittle or ductile behavior. Section two describes the

atomistic model used in the simulation. Several properties of the

material, elastic constants and ideal stresses, were determined in

additional tests by applying CMD to a block of perfect lattice under

different states of stress. The continuum criteria to predict brittle

or ductile behavior, KTC and RT,were studied and compared with atomis-

tic preductions given by CMD. Finally the rotations and strain field

due to plastic deformation around the crack tip were studied and

analyzed numerically.

5.2 Ductile and Brittle Behavior

Two criteriahave appeared recently to predict brittle or ductile

behavior in a known material under certain states of stress. Kelly,

Tyson and Cottrell proposed that brittle fracture would be observed

if (/O ) ideal > (7~ /) ma x , where the subscripts "ideal" and "max"

refer respectively to the ideal properties of a perfect lattice and

to the maximum values attained at a crack tip. ( )max is calcu-

lated using linear elasticity theory (for mode-1 fracture it is - 0.5)

and (f I0;)ideal is a property of the material. Rice and Thomson(1)



on the other hand, assumed that a necessary criterion for brittle

fracture is stability against the emission of dislocations from the

crack tip and have derived an analytical expression using linear

elasticity and the Peierls model of a dislocation core. They used

two different treatments to predict the type of fracture. The first

one is based on a three-dimensional model which calculates the energy

to activate a dislocation loop. The second one uses a two-dimensional

model with the dislocation emitted from the crack tip lying parallel

to the crack front. In both cases, three forces are supposed to be

acting on the dislocation near the crack tip: (a) the force due to

the stress field surrounding the crack, (b) the surface tension force

caused by creating more surface at the blunted crack, and (c) the

image force of the dislocation in the free surface of the crack. The

first force repels the dislocation, and the other two attract it toward

the crack tip, generating a position of unstable equilibrium where the

resultant force is zero. Both treatments, nevertheless, produced

(1)
similar quantitative results and we have studied the treatment

based on the two-dimensional model because it is more closely related

to our simulation setup.

Figure 5.1 shows the geometry of the dislocation and the crack

tip. The dislocation has a Burgers vector L perpendicular to the

dislocation line (edge dislocation); it is emitted at an angle of 60*

from the positive x axis (direction of maximum shear stress in mode-I

fracture). Under this condition the force acting on the dislocation

due to the stress field produced by the crack tip in mode-1 fracture

is:(3)is:
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Figure 5.1 Dislocation and crack configuration. The
Burgers vector e, perpendicular to the
dislocation line, corresponds to an edge
dislocation emitted by the crack tip. Rice-
Thomson criterion assumes that the crack tip
will be blunted by emission of dislocations
(plastic behavior) when the core of the dis-
location Jois greater than a critical dis-
tance, 9 . This critical distance corresponds
to a position of unstable equilibrium. For

< ( the dislocation is attracted by the
crack tip and for 5 s it is repelled.



where V .4/ : QJ4 S # 3i't, SA1d c. are the

exterior stress and half crack length respectively.

The attractive image force is (3 )

where E is the Young's modulus and Y the Poisson's ratio.

The third force is produced by the surface tension when the

crack is blunted (increment of free surface) and is given by

Tr +53)

is the surface energy, C: e fel , I :

The radius of the dislocation core, S, has been determined using

the Peierls model.(3)

The attractive forces, fi and fs, proportional to S and (

respectively, are greater than Iwhen 5 is small, and the opposite

occurs when is large. Hence, if the dislocation is able to sur-

mount the position of unstable equilibrium, c , it will be driven

away until it reaches some obstacle or it cannot overcome the resis-

tance of the lattice.



The critical distance, c , at which the dislocation reaches an

unstable equilibrium is, from Eqs. (5-1), (5-2) and (5-3)

after replacing E by 2i(+') and making '= 60

At this point, the Rice-Thomson criterion assumes that if the

position of equilibrium S, obtained from Eq. (5-4), is less than the

dislocation core, 9o, spontaneous generation is possible and the crack

suffers ductile fracture.

Rice and Thomson have determined the dislocation core o and

the critical distance 9 for a wide range of materials, and based on

these results they found that a sharp cleavage crack is stable in a

wide range of crystal types. In general, face-centered cubic materials

are able to emit dislocations. Ionic and covalent crystals are stable

against dislocation emission, and the body-centered cubic crystals are

intermediate between brittle and ductile materials.

5.3 Computer Molecular Dynamics Studies of Ductile versus Brittle

Behavior

The simulation system we have studied is composed of 436 part-

icles forming a triangular lattice and interacting through a Morse

potential (Fig. 5.2)

V(Y-p= D p4- (V V0) eZ x-- 01 )
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The parameters D, o~ and r were determined byCotterill and

Girifalco(5)using experimental values for the energy of vaporization,

the compressibility and the lattice constant of f.c.c. materials.

Fixed boundary was used in all the simulations. Under these

conditions, particles on the boundaries are displaced according to a

continuum elasticity solution and remain fixed during the rest of the

computation (see Chapter Four).

The computer simulations were carried out with a Morse potential

corresponding to Cu(4 ) and two other potentials of the Morse type with

the parameter o modified (see Table 5-1 at the end of this chapter).

The purpose of choosing different 4 values was to study the influence

of this parameter on the emission of dislocation from the crack tip.

As we will see at the end of the chapter, this parameter seems to

affect also the interaction of the crack tip with the boundary, the

interaction being smaller for smaller o(.

In addition to the CMD experiments to determine the elastic con-

stants of the system (Chapter 4), two different experiments were done

to find the ideal cohesive stress , and the ideal shear stress T:,.

The ideal cohesive stress, qe , can be determined by applying a

homogeneous expansion to a perfect lattice until the equally extended

bonds reach the maximum permissible length given by the cut-off of the

potential. The maximum stress reached during the experiment corres-

ponds to the ideal cohesive stress O- (Fig. 5.3). The ideal shear

stress, 0 , can be determined following the classical experiment of

Frenkel ( 6 ) which consists of the shearing of two rows of atoms in a

homogeneously strained crystal (Fig. 5.4). As noted by Orowan the
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ideal shear stress can be reduced (curve b) if atom A slides over atom

C instead of suffering a straight displacement (curve a). This is due

to the steeply repulsive part of interatomic potentials generated by

the overlapping of closed shells.

The Burgers vector corresponding to a certain sheared region

was determined by the equation(3)

where the derivative was approximated using the differences between

the displacements of two nearest neighbors.

The strain fields and rotations around the crack tip were de-

termined using the following equation(8) (Fig. 5.5):

x 4X

(~y U 4- _ _.u. LL a + Y. (5-7)

y x 4y Ax

As shown in Fig. 5.5, the relative displacements u and v were

interpolated for points A and B on the intersection of lines between

centers of the nearest neighbors particles and the positive x and y

directions. Using these relative displacements and the initial

separations dA and by , local shear strains, Ex, dilatations ,J

E and rotations Wy were determined. With the strains, Ex 7,

and E , the two principal strains were calculated. These results,
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Fig. 5.5 Interpolation scheme of relative displacements of bubbles used

in computing local shears and dilatations observed in sheared

bubble rafts.



jointly with the rotations, uox , are shown in Figs. 5.6 to 5.11 for

different configurations (before and after relaxation) and three

potential functions, Fig. 5.13.

Figures 5.6a and 5.6b show the initial and final configurations

in the case of a Morse potential with a equal to 0.25, M-3 potential.

KTC criterion predicts ductile behavior and RT criterion brittle be-

havior (Table 5.2). Better estimates using RT criterion can be made

by assigning ., the dislocation core, more realistic values deter-

mined by CMD.

Figure 5.6b shows the Burgers vector corresponding to the sheared

region enclosed in the Burgers circuit of Fig. 5.12. The Burgers

circuit was taken along a region of perfect material and finished at

point b to add up the effects of the small Burgers vectors correspond-

ing to shear along the planes between points a and b. The total

Burgers vector includes also the effects of the crack opening when the

linear elasticity theory is applied to generate the initial

configuration.

The sheared region, when a large stress intensity factor is

applied (Fig. 5.6b), extends until it interacts with the fixed boundary.

Figures 5.9a and 5.9b show the initial and final configuration for the

same material, M-3, and a lower stress intensity factor. In this case

the sheared region does not interact with the boundaries.

Figure 5.6b suggests the possibility of a phase transition from

a triangular to a cubic system by rotation of the lattice. To study

this kind of deformation the strain field and rotations were deter-

mined using the Eq. (5-7) (Fig. 5.7a-b and Fig. 5.8a-b). The same



studies were done with a different Morse potential, M-2, and smaller

shear deformations were observed (Fig. 5.10a-b). The different be-

havior in the case of M-2 potential seems to be due to the steeper

slope of the potential function (a=0.4). In this case, the inter-

action between particles has changed from "soft particles" (4=0.25)

to "hard particles" (4=0.4) and slip along certain planes is now

hindered by the rigid boundary (i.e., dd' Fig. 5.10b).

By increasing the parameter a to 1.3, M-1 potential,which cor-

responds to Cu atoms, the interaction with the boundary is even greater

(see Fig. 5.11) and presumably one has to use much larger systems in

order to observe the same type of sheared deformation.

The advantage of using a soft potential, M-3, despite the un-

realistic value of4 , is that the weak interaction with the boundary

may enable one to observe, through scaling, the behavior of a more

realistic potential such as M-1 in a larger system.

A graphic analogy of this case is shown in the bubble-raft

model where the dislocation width changes from a few interatomic

spacings for soft bubbles (1.9 mm diameter) to approximately 40 inter-

atomic spacings for hard bubbles (0.3 mm diameter). This explains

again the difficulty to accommodate the dislocations emitted by the

crack tip in a few interatomic spacings for the case of hard potentials.

KTC criterion predicts ductile behavior for M-2 and M-3 poten-

tials ((G)s .: ( C. TsI 1 0.0 6) . However, we have seen

that for the M-2 potential the interaction with the fixed boundary

starts to affect seriously the slip along some planes. In the case

of the M-1 potential, O5 I,',0 is 0.38, too close to 0.5 to make a
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clear-cut prediction. The CMD simulation has shown crack propagation

by breaking bonds along the crack front but the results are not com-

pletely free from boundary dependent effects by the reasons given

above.

RT criterion seems not to be successful in predicting the cor-

rect behavior for potentials M-2 and M-3, where KTC criterion and CMD

both predict ductile behavior. As noted by Rice and Thomson the ap-

plication of linear continuum elasticity in the region close to the

crack tip is an approximation and the core of the dislocation, ,

has been estimated according to the Peiersls model.

A comparative study of the prediction of these two criteria

has been made by Tyson (9 ) by compiling the results obtained with CMD.

This study also shows that KTC criterion is more successful

than the RT approximation.

Finally, the Lennard-Jones system studied in Chapter Four clearly

behaves as a brittle material, Figs. 4.5a to 4.5c. This behavior is

consistent with the high values found for o / c, and .
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Figure 5.6a Initial atomic configuration based on linear
elasticity theory of a two-dimensional crack
embedded in an infinite medium. System consists
of 436 particles arranged in a triangular
lattice, interacting through a Morse
potential (M-3).
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Figure 5.7a Principal strains at the initial configuration
(linear elasticity theory) f dilatation strain,

I compressive strain.
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Figure 5.7b

p.

Principal strains in the final relaxed con-
figuration (fixed boundary) f dilatation
strain, I compressive strain.
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Figure 5.8a Rotations at the initial configuration
(linear elasticity theory). t indicates
the magnitude of the rotation.
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Figure 5.8b Rotations at the final relaxed configuration

(fixed boundary). f indicates the magnitude

of the rotation.
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Chapter Six

Summary and Conclusions
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6. Summary and Conclusions

Computer Molecular Dynamics has been applied to the study of

fracture in a two-dimensional lattice. The major purpose of this work

was to study and establish interrelations between several macroscopic

properties such as fracture toughness, stability of the crack against

emission of dislocation and deformation field around the crack tip.

We have developed a computer simulation program which can be used

with crystalline solids, liquids and gases, under a variety of boundary

conditions, periodic, free, fixed and flexible boundaries.

The first step in the development of the computer simulation

model consisted of setting up the standard CMD techniques which per-

mitted an accurate and efficient determination of the classical trajec-

tories of the particles and the static and dynamic properties of the

system. The simulations were carried out in a perfect monoatomic

system (rare gas). Additional tests were done to study the accuracy

of the calculations: conservation of energy and reversibility of

trajectories.

The microscopic elastic constants, dispersion relation and phonon

spectrum of the system were determined by lattice dynamics. These

calculations were not necessary for the rest of the work but of in-

terest in order to study anharmonic effects and derive analytical ex-

pressions for calculating the macroscopic elastic constants of the

system.

Two boundary conditions have been studied in detail. A fixed

boundary condition consists of placing the boundary particles according

to a continuum elasticity solution. A flexible boundary condition
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consists of surrounding the simulation region by a continuum region

in which particles are moved according to a Green's function to relax

the forces arising from the interactions between the atomic system

and the continuum. The Green's function used is that derived by Hirth

for the case of isotropic elastic media with a crack, a result we have

rederived for the case of a line force in an infinite medium following

a procedure similar to the determination of potentials in electro-

statics. The simplicity and generality of this method permit direct

applications to the determination of the displacement fields of other

point and line defects (i.e., interstitials and dislocations).

The flexible boundary procedure was found to be efficient and

accurate in studying crack tip configurations in brittle materials.

It was possible to determine the critical stress values for propagating

the crack with a smaller number of particles compared to the fixed

boundary method.

The critical stress intensity factor, determined by CMD simula-

tion in brittle materials, has been found to be greater than the value

predicted by Griffith's theory. However, this value is -quite sensitive

to the assumed crack surface interactions in the simulation. Higher

values, about two times Griffith's predictions, were found when inter-

actions were permitted between atoms situated on opposite crack sur-

faces, and lower values, about 15% greater than the Griffith criterion,

were found when no interactions were assumed.

The difference between these results and Griffith's theory can

be explained as follows. First, the Griffith criterion is based on an

energy balance and it is considered a necessary but not sufficient
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condition for crack propagation. Secondly, the equations used by

Griffith are based upon macroscopic linear elastic continuum properties

and do not consider the local atomic relaxations around the crack tip

and the changes in stress distribution with different crack tip atomic

models. In the case of plasticity we should include as another reason

for the large critical stress found by simulation the additional energy

expended in the emission of dislocations. In the test of Griffith's

criterion we have worked with a brittle solid, a Lennard-Jones rare

gas system. Other potentials appropriate for brittle materials or even

truncated Hookean potentials would be interesting cases for study by

CMD.

The flexible boundary method was found to be not so efficient,

in the sense of being applicable to systems with small number of par-

ticles, when high stresses were applied and large non-linear regions

were produced around the crack tip. The constraint imposed by the

continuum solution at the boundaries does not permit one to study

plastic relaxation by the emission of dislocation from the crack tip.

However, this constraint was not so important during the first stages

of the plastic region formation or when small stresses were applied.

In these cases, the plastic region was small and did not interact

with the boundaries.

The strain and rotation fields were determined for several

stresses and different potential functions. The purpose of using dif-

ferent potential functions was to study the influence of the poten-

tial parameters on the brittle or ductile behavior observed by com-

puter simulation.
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In the case of ductile materials, which correspond to Morse

potentials M-2 and M-3, emission of dislocation from the crack tip was

observed and the size of the sheared region increased with higher

applied stresses. In some of the results obtained with the potential

M-3, analysis of the rotation field around the sheared region suggests

a phase transition from triangular to cubic lattice.

The Kelly, Tyson and Cottrell (KTC) and Rice-Thomson (RT)

criteria for predicting brittle or ductile behavior in crystalline

materials were studied and their predictions confronted to CMD obser-

vation. Both criteria are based on continuum linear elastic deriva-

tions and in order to determine their predictions the elastic con-

stants, surface energy and ideal stresses were calculated by indepen-

dent simulations for all the potential functions.

The predictions of KTC criterion gave good agreement with CMD

observations. In the case of the Morse potential M-l, which is more

steeply repulsive compared to M-2 and M-3, the behavior is not well-

defined. While the value of the ratio s / uI is close to 0.5, the

limit for ductile behavior, brittle behavior was observed in CMD re-

sults. However, the computer results also indicated strong inter-

action of shear deformation with the boundaries and this could have

been the reason for the absence of dislocations in the data.

The RT criterion seems to underestimate the possibility of

ductile behavior. However, more accurate predictions can be obtained

by using CMD to determine more realistic values for the core of the

dislocation. The core width, as it has already been discussed, can

vary significantly with the slope of the potential function, the
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width increasing with a steeper slope. This fact would explain again

the absence of dislocations in the simulation with the M-1 potential,

where the emission of dislocations would be prevented by the strong

interaction of the wide and uncompressible core of the dislocation with

the boundaries.

The brittleness of the material can be affected by the depth of

the potential function, assuming no significant changes occur to other

physical constants. The surface energy, or energy necessary to create

a new surface by breaking bonds is logically connected with this

parameter that determines the energy to break one atomic bond.

Further improvements in the study of emission and propagation

of dislocations from the crack tip could be done by determining the

Peirls stress and core width of the dislocation by CMD, using the

potential functions studied in this thesis. The distance travelled

by a dislocation in the presence of the crack tip stress field will

depend ultimately on the stress necessary to overcome the friction of

the lattice (Peierls stress), and it will define the extension of the

plastic region. The width of the dislocation core would help to pre-

dict accurately the behavior of the system using the RT criterion and

also would explain the influence of the boundaries on the emission of

dislocations from the crack tip. Flexible boundary conditions could

play an important role in the determination of the Peierls stress and

core width of the dislocation. In this case our system would consist

of a dislocation core, with a width of a few interatomic spacings, and

an exterior linear elastic region that can be accurately treated with

our flexible boundary procedure.
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Another interesting area of future work is the dynamics of

crack propagation. This problem is well suited to studies by CMD,

but involves difficulties with regard to appropriate boundary

conditions.

Finally, it is necessary to remark that all the present simula-

tions were carried out with a two-dimensional system at O0K. There

are known physical properties such as the ductile behavior. of Cu

which may appear to be inconsistent with our simulation, in this case

the results on Morse potential M-l. We do not think this is a real

conflict because there are close packet planes in a three-dimensional

system which are not present in a two-dimensional system. It would be

desirable to verify directly by simulation that a three-dimensional

solid with potential M-1 is indeed ductile. The consideration of this

factor would not involve great computational difficulties and could

be another area of future work.



123

References

Chapter One

1. E. Orowan, Rep. Progr. Phys. 12, 48(1949).

2. P.C. Gehlen and M.F. Kanninen, "Inelastic Behavior of Solids",
edited by M.F. Kanninen, McGraw-Hill, New York (1970).

3. J.E. Sinclair and B.R Lawn, Proc. Roy. Soc. London A329,

83(1972).

4. W.T. Sanders, Eng. Fract. Mech. 4, 145(1972).

5. J.H. Weiner and M. Pear, J. Appl. Phys. 46, 2398(1975).

6. W.T. Ashurst and W.G. Hoover, Phys. Rev. B14, 1065(1976).

Chapter Two

1. J.E. Lennard-Jones, Proc. R. Soc. A106, 463(1924).

2. P.M. Morse, Phys. Rev. 34, 57(1929).

3. L.A. Girifalco and W.G. Weizer, Phys. Rev. 114, 687(1958).

4. P. Shofield, Computer Physics Communications 5, 17(1973).

5. P.C. Gehlen, J.R. Beeler and R.I. Jaffee, "Interatomic Potentials
and Simulation of Lattice Defects", (1972).

6. J.R. Beeler, Jr., in "Advances in Materials Research", Vol. 4,

H. Herman/John Wiley & Sons (1970), pp. 295-476.

7. P.A. Flinn and A.A. Maradudin, Ann. Phys. (NY) 18, 81(1962).

8. H. Kanzaki,J. Phys. Chem. Solids 2, 24(1957).

9. J.R. Hardy, J. Phys. Chem. Solids 15, 39(1960).

10. J.B. Gibson and A.N. Goland, Phy. Rev. 120, 1229(1960).

Chapter Three

1. A.A. Griffith, Phil. Trans. Roy. Soc. A221, 163(1920).

2. A.A. Griffith, Proc. First Internat. Congr. Appl. Mech.

(ed. C.B. Biezeno), p. 55.



124

3. C.E. Inglis, Trans. Inst. Naval Archt. 55, 219(1913).

4. A.J.M. Spencer, Int. J. Engng. Sci. 3, 441(1965).

5. A. Kelly, W. Tyson and A.H. Cottrell, Phil. Meg. 15, 567(1967).

6. J.R. Rice and R. Thomson, Phil. Mag. 29, 78(1974).

7. M.F. Kanninen and P.C. Gehlen, "Interatomic Potentials and
Simulation of Lattice Defects", J.R. Beeler (Plenum, N.Y.
1972), p. 7B.

8. P.C. Gehlen and M.F. Kanninen, "Inelastic Behavior of Solids",
P.C. Gehlen, editor (1970).

9. M.F. Kanninen and P.C. Gehlen, Int. Journ. of Fracture Mech. 7,
471(1971).

10. J.E. Sinclair and B.R. Lawn, Proc. R. Soc. Lond. A329, 83*1972).

11. R. Thomson, C. Hsieh and V. Rana, J. Appl. Phys. 42, 3154(1971).

12. R. Thomson, Ann. Rev. Mat. Sci. 3, 31(1973).

13. C. Hsieh and R. Thomson, J. Appl. Phys. 44, 2051(1973).

14. A. Gohar, "A Microscopic Fracture Study in the 2-D Triangular
Lattice", thesis (1979).

15. W.T. Ashurst and W.G. Hoover, Phys. Rev. B14, 1465(1976).

16. J.H. Weiner and M. Pear, Journal of Appl. Phys. 46, 2398(1975).

Chapter Four

1. J.E. Sinclair, P.C. Gehlen, R.G. Hoagland and J.P. Hirth,
J. Appl. Phys. 49, 3890(1978).

2. J.E. Sinclair, Philos. Mag. 31, 647(1975).

3. P.C. Gehlen, J.P. Hirth, R.G. Hoagland and M.F. Kanninen,
J. Appl. Phys. 43, 3921(1972).

4. P.C. Gehlen, G.T. Hahn and M.F. Kanninen, Scripta Met. 6,
535(1972).

5. A.J. Markworth, M.F. Kanninen and P.C. Gehlen, Int. Conf. of
Stress Corrosion Cracking,- France (12 June 1973).



125

6. R.G. Hoagland, J.P. Hirth and P.C. Gehlen, Philos. Mag. 34,
413(1976).

7. J.P. Hirth and J. Lothe, "Theory of Dislocations", McGraw-
Hill (1968).

8. J.P. Hirth, R.G. Hoagland and P.C. Gehlen, Int. J. Solids
Structures 10, 977(1974).

9. J.P. Hirth, Scripta Met. 6, 535(1972).

10. A.E. Green and W. Zerna, "Theoretical Elasticity", Oxford
Press (1954).

11. G.C. Sih and A. Liebowith, "Fracture", (1968).

12. N.I. Muskhelishvili, "Some Basic Problems in the Mathematical
Theory of Elasticity", Nordhoff, Groningen, Holland (1953).

13. N.I. Muskhelishvili, "Singular Integral Equations", Nordhoff,
Groningen, Holland (1953).

14. B.R. Lawn and T.R. Wilshaw, "Fracture of Brittle Solids",
Cambridge University Press (1975).

15. J.D. Eshelby, W.T. Read and W. Shockley, Acta Met. 1, 251(1953).

16. W.T. Ashurst and W.G. Hoover, Phys. Rev. B14, 1465(1976).

17. W.G. Hoover, W.T. Ashurst and R.J. Olness, J. Chem. Phys. 60,
4043(1974).

18. L.D. Landau and E.M. Lifshitz, "Theory of Elasticity",
Pergamon, New York (1959).

19. A. Love, "The Mathematical Theory of Elasticity", Cambridge
University Press, Cambridge (1927).

20. A.S. Argon and H.Y. Kuo, Mat. Sci. Engng. 39, 101(1979).

21. A.H. Cottrell, "Dislocations and Plastic Flow in Crystals",
(1953).

22. P.C. Gehlen, G.F. Hahn and M.F. Kanninen, Scripta Met. 6,
1087(1972).



126

Chapter Five

1. J.R. Rice and R. Thomson, Phil. Mag. 29, 73(1974).

2. A. Kelly, W.R. Tyson and A.H. Cottrell, Phil. Mag. 15, (1967).

3. J. Hirth and J. Lothe, "Theory of Dislocations" (McGraw-Hill)
1968, p. 212.

4. J. Cottrell, "Lattice Defects and Their Interactions",
R.R. Hanguti, Gordon and Breach, Science Publishers, New York
(1968).

5. L.A. Girifalco and V.G. Weizer, Phys. Rev. 114, 687(1959).

6. J. Frenkel, Zeit. Phys. 37, 572(1926).

7. A.H. Cottrell, "Dislocations and Plastic Flow in Crystals"
(1953), p. 10.

8. A.S. Argon and H.Y. Kuo, Mat. Sci Engng. 39, 101(1979).


